Control of relative tunneling rates in single molecule bipolar electron transport.
نویسندگان
چکیده
The influence of relative electron tunneling rates on electron transport in a double-barrier single-molecule junction is studied. The junction is defined by positioning a scanning tunneling microscope tip above a copper phthalocyanine molecule adsorbed on a thin oxide film grown on the NiAl(110) surface. By tuning the tip-molecule separation, the ratio of tunneling rates through the two barriers, vacuum and oxide, is controlled. This results in dramatic changes in the relative intensities of individual conduction channels, associated with different vibronic states of the molecule.
منابع مشابه
Tunneling rates in electron transport through double-barrier molecular junctions in a scanning tunneling microscope.
The scanning tunneling microscope enables atomic-scale measurements of electron transport through individual molecules. Copper phthalocyanine and magnesium porphine molecules adsorbed on a thin oxide film grown on the NiAl(110) surface were probed. The single-molecule junctions contained two tunneling barriers, vacuum gap, and oxide film. Differential conductance spectroscopy shows that electro...
متن کاملModeling and Simulation of a Molecular Single-Electron Transistor
In this paper, to understand the concept of coupling, molecule density of states that coupled to the metal electrodes will be explained then, based on this concept, a weak and strong coupling for the molecules attached to the metal electrodes will be described. Capacitance model is used to explore the connection of addition energy with the Electron affinity and the ionization energy of the mole...
متن کاملThe First NanoSquare Conference of Nanoscience and Nanotechnology Single Molecule Analyses by Molecular Tips for Scanning Tunneling Microscopy
Understanding electron transport through a single molecule is of fundamental importance for molecular electronics. Recently, there have been significant advances in the measurement of electron transport through a single molecule [1]. One of the next challenges toward the realization of molecular electronic devices lies in measuring electron transport between single molecules interacting with ea...
متن کاملRoom Temperature Hydrogen Sensor Based on Single-Electron Tunneling Between Palladium Nanoparticles
In this paper, we present the results of single-electron tunneling in two-dimensional (2D) hexagonal closed packed arrays of palladium nanoparticles. After inspecting the emergence of Coulomb blockade phenomena, we demonstrate the possibilities of using these arrays as a single-electron tunneling based hydrogen sensor. We assumed arrays of palladium nanoparticles with diameters of 3.5 and 6...
متن کاملFirst Princiles Study of the Electron Transport Properties of Buthane-dithiol Nano-Molecular Wire
We report a first-principles study of electrical transport in a single molecular conductor consisting of a buthane-dithiol sandwiched between two Au (100) electrodes. We show that the current was increased by increasing of the external voltage biases. The projected density of states (PDOS) and transmission coefficients (T(E)) under various external voltage biases are analyzed, and it suggests t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 93 23 شماره
صفحات -
تاریخ انتشار 2004